GENETIC DIAGNOSIS OF MITOCHONDRIAL DISEASES BY DETECTION OF ABERRANT EXPRESSION AND SPICING EVENTS IN RNA SEQUENCING DATA

AKY Kwong*, JFT Chau*, VA Yepez², M Chui¹, MHY Tsang¹, M Lee¹, CW Fung¹, BHY Chung¹
¹Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR; ²Department of Informatics, Technical University of Munich, Munich, Germany
*With equal contributions

Background and objective
Mitochondrial diseases (MDs) are the commonest group of inborn errors of metabolism. Genetic diagnosis is crucial for disease management but challenging owing to phenotypic and genetic heterogeneity. MtDNA sequencing and whole exome sequencing (WES) are useful diagnostic tools, but a proportion of the patients remains undiagnosed. In this study, we aim to investigate the power of RNA sequencing (RNAseq) to overcome the limitation of WES for genetic diagnosis.

Methods
We studied a cohort of 25 undiagnosed patients with suspected MDs after WES. RNAseq was undergone for the fibroblasts of these 25 patients together with 6 genetic confirmed positive controls, 2 undiagnosed patients with other diseases and 8 unaffected controls. We implemented a recently established workflow, Detection of RNA outliers pipeline (DROP), to detect aberrant expression and splicing events.

Results
A total of 95 significant expression outliers and 1847 splicing outliers have been identified in the patients. Two significant aberrantly expressed genes, MFSD1 and GFM1, were found in one of the undiagnosed MD patients. These two genes are located with high proximity on chromosome 3 and a possible deletion covering MFSD1 is suggested. Further studies are needed to investigate whether the deletion will affect cis-acting elements controlling the expression of GFM1 associated with oxidative phosphorylation deficiency. An aberrant splicing event was identified in another patient resulting in partial intron 2 retention in POLRMT encoding mitochondrial RNA polymerase. Functional study is essential to evaluate the effect of the intron retention on protein function.

Conclusion
Here we have investigated a transcriptome-directed approach for molecular diagnosis of MDs. Further investigation by alternative prioritization of outliers and functional confirmation will be proceeded to identify candidate genetic defects to explain the patients’ phenotypes.

Acknowledgements
We would like to thank The Society for the Relief of Disabled Children and HMRF Commissioned Paediatric Research Programme (PR-HKU-4) for the support.